Tag Archives: transparency

Are UK teacher and pupil profile data stolen, lost and exposed?

Update received from Edmodo, VP Marketing & Adoption, June 1:


While everyone is focused on #WannaCry ransomware, it appears that a global edTech company has had a potential global data breach that few are yet talking about.

Edmodo is still claiming on its website it is, “The safest and easiest way for teachers to connect and collaborate with students, parents, and each other.” But is it true, and who verifies that safe is safe?

Edmodo data from 78 million users for sale

Matt Burgess wrote in VICE: “Education website Edmodo promises a way for “educators to connect and collaborate with students, parents, and each other”. However, 78 million of its customers have had their user account details stolen. Vice’s Motherboard reports that usernames, email addresses, and hashed passwords were taken from the service and have been put up for sale on the dark web for around $1,000 (£700).

“Data breach notification website LeakBase also has a copy of the data and provided it to Motherboard. According to LeakBase around 40 million of the accounts have email addresses connected to them. The company said it is aware of a “potential security incident” and is investigating.”

The Motherboard article by Joseph Cox, says it happened last month. What has been done since? Why is there no public information or notification about the breach on the company website?

Joseph doesn’t think profile photos are at risk, unless someone can log into an account. He was given usernames, email addresses, and hashed passwords, and as far as he knows, that was all that was stolen.

“The passwords have apparently been hashed with the robust bcrypt algorithm, and a string of random characters known as a salt, meaning hackers will have a much harder time obtaining user’s actual login credentials. Not all of the records include a user email address.”

Going further back, it looks like Edmodo’s weaknesses had already been identified 4 years ago. Did anything change?

So far I’ve been unable to find out from Edmodo directly. There is no telephone technical support. There is no human that can be reached dialling the headquarters telephone number.

Where’s the parental update?

No one has yet responded to say whether UK pupils and teachers’ data was among that reportedly stolen. (Update June 1, the company did respond with confirmation of UK users involved.)

While there is no mention of the other data the site holds being in the breach, details are as yet sketchy, and Edmodo holds children’s data. Where is the company assurance what was and was not stolen?

As it’s a platform log on I would want to know when parents will be told exactly what was compromised and how details have been exposed. I would want clarification if this could potentially be a weakness for further breaches of other integrated systems, or not.

Are edTech and IoT toys fit for UK children?

In 2016, more than 727,000 UK children had their information compromised following a cyber attack on VTech, including images. These toys are sold as educational, even if targeted at an early age.

In Spring 2017, CloudPets, the maker of Internet of Things teddy bears, “smart toys” left more than two million voice recordings from children online without any security protections and exposing children’s personal details.

As yet UK ministers have declined our civil society recommendations to act and take steps on the public sector security of national pupil data or on the private security of Internet connected toys and things. The latter in line with Germany for example.

It is right that the approach is considered. The UK government must take these risks seriously in an evidence based and informed way, and act, not with knee jerk reactions. But it must act.

Two months after Germany banned the Cayla doll, we still had them for sale here.

Parents are often accused of being uninformed, but we must be able to expect that our products pass a minimum standard of tech and data security testing as part of pre-sale consumer safety testing.

Parents have a responsibility to educate themselves to a reasonable level of user knowledge. But the opportunities are limited when there’s no transparency. Much of the use of a child’s personal data and system data’s interaction with our online behaviour, in toys, things, and even plain websites remains hidden to most of us.

So too, the Edmodo privacy policy contained no mention of profiling or behavioural web tracking, for example. Only when this savvy parent spotted it was happening, it appears the company responded properly to fix it. Given strict COPPA rules it is perhaps unsurprising, though it shouldn’t have happened at all.

How will the uses of these smart toys, and edTech apps be made safe, and is the government going to update regulations to do so?

Are public sector policy, practice and people, fit for managing UK children’s data privacy needs?

While these private edTech companies used directly in schools can expose children to risk, so too does public data collected in schools, being handed out to commercial companies, by government departments. Our UK government does not model good practice.

Two years on, I’m still working on asking for fixes in basic national pupil data improvement.  To make safe data policy, this is far too slow.

The Department for Education is still cagey about transparency, not telling schools it gives away national pupil data including to commercial companies without pupil or parental knowledge, and hides the Home Office use, now on a monthly basis, by not publishing it on a regular basis.

These uses of data are not safe, and expose children to potential greater theft, loss and selling of their personal data. It must change.

Whether the government hands out children’s data to commercial companies at national level and doesn’t tell schools, or staff in schools do it directly through in-class app registrations, it is often done without consent, and without any privacy impact assessment or due diligence up front. Some send data to the US or Australia. Schools still tell parents these are ‘required’ without any choice. But have they ensured that there is an equal and adequate level of data protection offered to personal data that they extract from the SIMs?

 

School staff and teachers manage, collect, administer personal data daily, including signing up children as users of web accounts with technology providers. Very often telling parents after the event, and with no choice. How can they and not put others at risk, if untrained in the basics of good data handling practices?

In our UK schools, just like the health system, the basics are still not being fixed or good practices on offer to staff. Teachers in the UK, get no data privacy or data protection training in their basic teacher training. That’s according to what I’ve been told so far from teacher trainers, CDP leaders, union members and teachers themselves,

Would you train fire fighters without ever letting them have hose practice?

Infrastructure is known to be exposed and under invested, but it’s not all about the tech. Security investment must also be in people.

Systemic failures seen this week revealed by WannaCry are not limited to the NHS. This from George Danezis could be, with few tweaks, copy pasted into education. So the question is not if, but when the same happens in education, unless it’s fixed.

“…from poor security standards in heath informatics industries; poor procurement processes in heath organizations; lack of liability on any of the software vendors (incl. Microsoft) for providing insecure software or devices; cost-cutting from the government on NHS cyber security with no constructive alternatives to mitigate risks; and finally the UK/US cyber-offense doctrine that inevitably leads to proliferation of cyber-weapons and their use on civilian critical infrastructures.” [Original post]

The power behind today’s AI in public services

The power behind today’s AI in public services

Thinking about whether education in England is preparing us for the jobs of the future, means also thinking about how technology will influence it.

Time and again, thinking and discussion about these topics is siloed. At the Turing Institute, the Royal Society, the ADRN and EPSRC, in government departments, discussions on data, or within education practitioner, and public circles — we are all having similar discussions about data and ethics, but with little ownership and no goals for future outcomes. If government doesn’t get it, or have time for it, or policy lacks ethics by design, is it in the public interest for private companies, Google et al., to offer a fait accompli?

There is lots of talking about Machine Learning (ML), Artificial Intelligence (AI) and ethics. But what is being done to ensure that real values — respect for rights, human dignity, and autonomy — are built into practice in the public services delivery?

In most recent data policy it is entirely absent. The Digital Economy Act s33 risks enabling, through removal of inter and intra-departmental data protections, an unprecedented expansion of public data transfers, with “untrammelled powers”. Powers without codes of practice, promised over a year ago. That has fall out for the trustworthiness of legislative process, and data practices across public services.

Predictive analytics is growing but poorly understood in the public and public sector.

There is already dependence on computers in aspects of public sector work. Its interactions with others in sensitive situations demands better knowledge of how systems operate and can be wrong. Debt recovery, and social care to take two known examples.

Risk averse, staff appear to choose not to question the outcome of ‘algorithmic decision making’ or do not have the ability to do so. There is reportedly no analysis training for practitioners, to understand the basis or bias of conclusions. This has the potential that instead of making us more informed, decision-making by machine makes us humans less clever.

What does it do to professionals, if they feel therefore less empowered? When is that a good thing if it overrides discriminatory human decisions? How can we tell the difference and balance these risks if we don’t understand or feel able to challenge them?

In education, what is it doing to children whose attainment is profiled, predicted, and acted on to target extra or less focus from school staff, who have no ML training and without informed consent of pupils or parents?

If authorities use data in ways the public do not expect, such as to ID homes of multiple occupancy without informed consent, they will fail the future to deliver uses for good. The ‘public interest’, ‘user need,’ and ethics can come into conflict according to your point of view. The public and data protection law and ethics object to harms from use of data. This type of application has potential to be mind-blowingly invasive and reveal all sorts of other findings.

Widely informed thinking must be made into meaningful public policy for the greatest public good

Our politicians are caught up in the General Election and buried in Brexit.

Meanwhile, the commercial companies taking AI first rights to capitalise on existing commercial advantage could potentially strip public assets, use up our personal data and public trust, and leave the public with little public good. We are already used by global data players, and by machine-based learning companies, without our knowledge or consent. That knowledge can be used to profit business models, that pay little tax into the public purse.

There are valid macro economic arguments about whether private spend and investment are preferable compared with a state’s ability to do the same. But these companies make more than enough to do it all. Does it signal a failure to a commitment to the wider community; not paying just amounts of taxes, is it a red flag to a company’s commitment to public good?

What that public good should look like, depends on who is invited to participate in the room, and not to tick boxes, but to think and to build.

The Royal Society’s Report on AI and Machine Learning published on April 25, showed a working group of 14 participants, including two Google DeepMind representatives, one from Amazon, private equity investors, and academics from cognitive science and genetics backgrounds.

Our #machinelearning working group chair, professor Peter Donnelly FRS, on today’s major #RSMachinelearning report https://t.co/PBYjzlESmB pic.twitter.com/RM9osnvOMX

— The Royal Society (@royalsociety) April 25, 2017

If we are going to form objective policies the inputs that form the basis for them must be informed, but must also be well balanced, and be seen to be balanced. Not as an add on, but be in the same room.

As Natasha Lomas in TechCrunch noted, “Public opinion is understandably a big preoccupation for the report authors — unsurprisingly so, given that a technology that potentially erodes people’s privacy and impacts their jobs risks being drastically unpopular.”

“The report also calls on researchers to consider the wider impact of their work and to receive training in recognising the ethical implications.”

What are those ethical implications? Who decides which matter most? How do we eliminate recognised discriminatory bias? What should data be used for and AI be working on at all? Who is it going to benefit? What questions are we not asking? Why are young people left out of this debate?

Who decides what the public should or should not know?

AI and ML depend on data. Data is often talked about as a panacea to problems of better working together. But data alone does not make people better informed. In the same way that they fail, if they don’t feel it is their job to pick up the fax. A fundamental building block of our future public and private prosperity is understanding data and how we, and the AI, interact. What is data telling us and how do we interpret it, and know it is accurate?

How and where will we start to educate young people about data and ML, if not about their own and use by government and commercial companies?

The whole of Chapter 5 in the report is very good as a starting point for policy makers who have not yet engaged in the area. Privacy while summed up too short in conclusions, is scattered throughout.

Blind spots remain, however.

  • Over willingness to accommodate existing big private players as their expertise leads design, development and a desire to ‘re-write regulation’.
  • Slowness to react to needed regulation in the public sector (caught up in Brexit) while commercial drivers and technology change forge ahead
  • ‘How do we develop technology that benefits everyone’ must not only think UK, but global South, especially in the bias in how AI is being to taught, and broad socio-economic barriers in application
  • Predictive analytics and professional application = unwillingness to question the computer result. In children’s social care this is already having a damaging upturn in the family courts (S31)
  • Data and technology knowledge and ethics training, must be embedded across the public sector, not only post grad students in machine learning.
  • Harms being done to young people today and potential for intense future exploitation, are being ignored by policy makers and some academics. Safeguarding is often only about blocking in case of liability to the provider, stopping children seeing content, or preventing physical exploitation. It ignores exploitation by online platform firms, and app providers and games creators, of a child’s synthesised online life and use. Laws and government departments’ own practices can be deeply flawed.
  • Young people are left out of discussions which, after all, are about their future. [They might have some of the best ideas, we miss at our peril.]

There is no time to waste

Children and young people have the most to lose while their education, skills, jobs market, economy, culture, care, and society goes through a series of gradual but seismic shift in purpose, culture, and acceptance before finding new norms post-Brexit. They will also gain the most if the foundations are right. One of these must be getting age verification right in GDPR, not allowing it to enable a massive data grab of child-parent privacy.

Although the RS Report considers young people in the context of a future workforce who need skills training, they are otherwise left out of this report.

“The next curriculum reform needs to consider the educational needs of young people through the lens of the implications of machine learning and associated technologies for the future of work.”

Yes it does, but it must give young people and the implications of ML broader consideration for their future, than classroom or workplace.

Facebook has targeted vulnerable young people, it is alleged, to facilitate predatory advertising practices. Some argue that emotive computing or MOOCs belong in the classroom. Who decides?

We are not yet talking about the effects of teaching technology to learn, and its effect on public services and interactions with the public. Questions that Sam Smith asked in Shadow of the smart machine: Will machine learning end?

At the end of this Information Age we are at a point when machine learning, AI and biotechnology are potentially life enhancing or could have catastrophic effects, if indeed “AI will cause people ‘more pain than happiness” as described by Alibaba’s founder Jack Ma.

The conflict between commercial profit and public good, what commercial companies say they will do and actually do, and fears and assurances over predicted outcomes is personified in the debate between Demis Hassabis, co-founder of DeepMind Technologies, (a London-based machine learning AI startup), and Elon Musk, discussing the perils of artificial intelligence.

Vanity Fair reported that, Elon Musk began warning about the possibility of A.I. running amok three years ago. It probably hadn’t eased his mind when one of Hassabis’s partners in DeepMind, Shane Legg, stated flatly, “I think human extinction will probably occur, and technology will likely play a part in this.””

Musk was of the opinion that A.I. was probably humanity’s “biggest existential threat.”

We are not yet joining up multi disciplinary and cross sector discussions of threats and opportunities

Jobs, shift in needed skill sets for education, how we think, interact, value each other, accept or reject ownership and power models; and later, from the technology itself. We are not yet talking conversely, the opportunities that the seismic shifts offer in real terms. Or how and why to accept or reject or regulate them.

Where private companies are taking over personal data given in trust to public services, it is reckless for the future of public interest research to assume there is no public objection. How can we object, if not asked? How can children make an informed choice? How will public interest be assured to be put ahead of private profit? If it is intended on balance to be all about altruism from these global giants, then they must be open and accountable.

Private companies are shaping how and where we find machine learning and AI gathering data about our behaviours in our homes and public spaces.

SPACE10, an innovation hub for IKEA is currently running a survey on how the public perceives and “wants their AI to look, be, and act”, with an eye on building AI into their products, for us to bring flat-pack into our houses.

As the surveillance technology built into the Things in our homes attached to the Internet becomes more integral to daily life, authorities are now using it to gather evidence in investigations; from mobile phones, laptops, social media, smart speakers, and games. The IoT so far seems less about the benefits of collaboration, and all about the behavioural data it collects and uses to target us to sell us more things. Our behaviours tell much more than how we act. They show how we think inside the private space of our minds.

Do you want Google to know how you think and have control over that? The companies of the world that have access to massive amounts of data, and are using that data to now teach AI how to ‘think’. What is AI learning? And how much should the State see or know about how you think, or try to predict it?

Who cares, wins?

It is not overstated to say society and future public good of public services, depends on getting any co-dependencies right. As I wrote in the time of care.data, the economic value of data, personal rights and the public interest are not opposed to one another, but have synergies and co-dependency. One player getting it wrong, can create harm for all. Government must start to care about this, beyond the side effects of saving political embarrassment.

Without joining up all aspects, we cannot limit harms and make the most of benefits. There is nuance and unknowns. There is opaque decision making and secrecy, packaged in the wording of commercial sensitivity and behind it, people who can be brilliant but at the end of the day, are also, human, with all our strengths and weaknesses.

And we can get this right, if data practices get better, with joined up efforts.

Our future society, as our present, is based on webs of trust, on our social networks on- and offline, that enable business, our education, our cultural, and our interactions. Children must trust they will not be used by systems. We must build trustworthy systems that enable future digital integrity.

The immediate harm that comes from blind trust in AI companies is not their AI, but the hidden powers that commercial companies have to nudge public and policy maker behaviours and acceptance, towards private gain. Their ability and opportunity to influence regulation and future direction outweighs most others. But lack of transparency about their profit motives is concerning. Carefully staged public engagement is not real engagement but a fig leaf to show ‘the public say yes’.

The unwillingness by Google DeepMind, when asked at their public engagement event, to discuss their past use of NHS patient data, or the profit model plan or their terms of NHS deals with London hospitals, should be a warning that these questions need answers and accountability urgently.

As TechCrunch suggested after the event, this is all “pretty standard playbook for tech firms seeking to workaround business barriers created by regulation.” Calls for more data, might mean an ever greater power shift.

Companies that have already extracted and benefited from personal data in the public sector, have already made private profit. They and their machines have learned for their future business product development.

A transparent accountable future for all players, private and public, using public data is a necessary requirement for both the public good and private profit. It is not acceptable for departments to hide their practices, just as it is unacceptable if firms refuse algorithmic transparency.

Rebooting antitrust for the information age will not be easy. It will entail new risks: more data sharing, for instance, could threaten privacy. But if governments don’t want a data economy dominated by a few giants, they will need to act soon.” [The Economist, May 6]

If the State creates a single data source of truth, or private Giant tech thinks it can side-step regulation and gets it wrong, their practices screw up public trust. It harms public interest research, and with it our future public good.

But will they care?

If we care, then across public and private sectors, we must cherish shared values and better collaboration. Embed ethical human values into development, design and policy. Ensure transparency of where, how, who and why my personal data has gone.

We must ensure that as the future becomes “smarter”, we educate ourselves and our children to stay intelligent about how we use data and AI.

We must start today, knowing how we are used by both machines, and man.


First published on Medium for a change.

Information. Society. Services. Children in the Internet of Things.

In this post, I think out loud about what improving online safety for children in The Green Paper on Children’s Internet Safety means ahead of the General Data Protection Regulation in 2018. Children should be able to use online services without being used and abused by them. If this regulation and other UK Government policy and strategy are to be meaningful for children, I think we need to completely rethink the State approach to what data privacy means in the Internet of Things.
[listen on soundcloud]


Children in the Internet of Things

In 1979 Star Trek: The Motion Picture created a striking image of A.I. as Commander Decker merged with V’Ger and the artificial copy of Lieutenant Ilia, blending human and computer intelligence and creating an integrated, synthesised form of life.

Ten years later, Sir Tim Berners-Lee wrote his proposal and created the world wide web, designing the way for people to share and access knowledge with each other through networks of computers.

In the 90s my parents described using the Internet as spending time ‘on the computer’, and going online meant from a fixed phone point.

Today our wireless computers in our homes, pockets and school bags, have built-in added functionality to enable us to do other things with them at the same time; make toast, play a game, and make a phone call, and we live in the Internet of Things.

Although we talk about it as if it were an environment of inanimate appliances,  it would be more accurate to think of the interconnected web of information that these things capture, create and share about our interactions 24/7, as vibrant snapshots of our lives, labelled with retrievable tags, and stored within the Internet.

Data about every moment of how and when we use an appliance, is captured at a rapid rate, or measured by smart meters, and shared within a network of computers. Computers that not only capture data but create, analyse and exchange new data about the people using them and how they interact with the appliance.

In this environment, children’s lives in the Internet of Things no longer involve a conscious choice to go online. Using the Internet is no longer about going online, but being online. The web knows us. In using the web, we become part of the web.

Our children, to the computers that gather their data, have simply become extensions of the things they use about which data is gathered and sold by the companies who make and sell the things. Things whose makers can even choose who uses them or not and how. In the Internet of things,  children have become things of the Internet.

A child’s use of a smart hairbrush will become part of the company’s knowledge base how the hairbrush works. A child’s voice is captured and becomes part of the database for the development training of the doll or robot they play with.

Our biometrics, measurements of the unique physical parts of our identities, provides a further example of the recent offline-self physically incorporated into banking services. Over 1 million UK children’s biometrics are estimated to be used in school canteens and library services through, often compulsory, fingerprinting.

Our interactions create a blended identity of online and offline attributes.

The web has created synthesised versions of our selves.

I say synthesised not synthetic, because our online self is blended with our real self and ‘synthetic’ gives the impression of being less real. If you take my own children’s everyday life as an example,  there is no ‘real’ life that is without a digital self.  The two are inseparable. And we might have multiple versions.

Our synthesised self is not only about our interactions with appliances and what we do, but who we know and how we think based on how we take decisions.

Data is created and captured not only about how we live, but where we live. These online data can be further linked with data about our behaviours offline generated from trillions of sensors and physical network interactions with our portable devices. Our synthesised self is tracked from real life geolocations. In cities surrounded by sensors under pavements, in buildings, cameras, mapping and tracking everywhere we go, our behaviours are converted into data, and stored inside an overarching network of cloud computers so that our online lives take on life of their own.

Data about us, whether uniquely identifiable on its own or not, is created and collected actively and passively. Online site visits record IP Address and use linked platform log-ins that can even extract friends lists without consent or affirmative action from them.

Using a tool like Privacy Badger from EEF gives you some insight into how many sites create new data about online behaviour once that synthesised self logs in, then tracks your synthesised self across the Internet. How you move from page to page, with what referring and exit pages and URLs, what adverts you click on or ignore,  platform types, number of clicks, cookies, invisible on page gifs and web beacons. Data that computers see, interpret and act on better than us.

Those synthesised identities are tracked online,  just as we move about a shopping mall offline.

Sir Tim Berners-Lee said this week, there is a need to put “a fair level of data control back in the hands of people.” It is not a need but vital to our future flourishing, very survival even. Data control is not about protecting a list of information or facts about ourselves and our identity for its own sake, it is about choosing who can exert influence and control over our life, our choices, and future of democracy.

And while today that who may be companies, it is increasingly A.I. itself that has a degree of control over our lives, as decisions are machine made.

Understanding how the Internet uses people

We get the service, the web gets our identity and our behaviours. And in what is in effect a hidden slave trade, they get access to use our synthesised selves in secret, and forever.

This grasp of what the Internet is, what the web is, is key to getting a rounded view of children’s online safety. Namely, we need to get away from the sole focus of online safeguarding as about children’s use of the web, and also look at how the web uses children.

Online services use children to:

  • mine, and exchange, repackage, and trade profile data, offline behavioural data (location, likes), and invisible Internet-use behavioural data (cookies, website analytics)
  • extend marketing influence in human decision-making earlier in life, even before children carry payment cards of their own,
  • enjoy the insights of parent-child relationships connected by an email account, sometimes a credit card, used as age verification or in online payments.

What are the risks?

Exploitation of identity and behavioural tracking not only puts our synthesised child at risk from exploitation, it puts our real life child’s future adult identity and data integrity at risk. If we cannot know who holds the keys to our digital identity, how can we trust that systems and services will be fair to us, not discriminate or defraud. Or not make errors that we cannot understand in order to correct?

Leaks, loss and hacks abound and manufacturers are slow to respond. Software that monitors children can also be used in coercive control. Organisations whose data are insecure, can be held to ransom. Children’s products should do what we expect them to and nothing more, there should be “no surprises” how data are used.

Companies tailor and target their marketing activity to those identity profiles. Our data is sold on in secret without consent to data brokers we never see, who in turn sell us on to others who monitor, track and target our synthesised selves every time we show up at their sites, in a never-ending cycle.

And from exploiting the knowledge of our synthesised self, decisions are made by companies, that target their audience, select which search results or adverts to show us, or hide, on which network sites, how often, to actively nudge our behaviours quite invisibly.

Nudge misuse is one of the greatest threats to our autonomy and with it democratic control of the society we live in. Who decides on the “choice architecture” that may shape another’s decisions and actions, and on what ethical basis?  once asked these authors who now seem to want to be the decision makers.

Thinking about Sir Tim Berners-Lee’s comments today on things that threaten the web, including how to address the loss of control over our personal data, we must frame it not a user-led loss of control, but autonomy taken by others; by developers, by product sellers, by the biggest ‘nudge controllers’ the Internet giants themselves.

Loss of identity is near impossible to reclaim. Our synthesised selves are sold into unending data slavery and we seem powerless to stop it. Our autonomy and with it our self worth, seem diminished.

How can we protect children better online?

Safeguarding must include ending data slavery of our synthesised self. I think of five things needed by policy shapers to tackle it.

  1. Understanding what ‘online’ and the Internet mean and how the web works – i.e. what data does a visit to a web page collect about the user and what happens to that data?
  2. Threat models and risk must go beyond the usual irl protection issues. Those  posed by undermining citizens’ autonomy, loss of public trust, of control over our identity, misuse of nudge, and how some are intrinsic to the current web business model, site users or government policy are unseen are underestimated.
  3. On user regulation (age verification / filtering) we must confront the idea that as a stand-alone step  it will not create a better online experience for the user, when it will not prevent the misuse of our synthesised selves and may increase risks – regulation of misuse must shift the point of responsibility
  4. Meaningful data privacy training must be mandatory for anyone in contact with children and its role in children’s safeguarding
  5. Siloed thinking must go. Forward thinking must join the dots across Departments into cohesive inclusive digital strategy and that doesn’t just mean ‘let’s join all of the data, all of the time’
  6. Respect our synthesised selves. Data slavery includes government misuse and must end if we respect children’s rights.

In the words of James T. Kirk, “the human adventure is just beginning.”

When our synthesised self is an inseparable blend of offline and online identity, every child is a synthesised child. And they are people. It is vital that government realises their obligation to protect rights to privacy, provision and participation under the Convention of the Rights of the Child and address our children’s real online life.

Governments, policy makers, and commercial companies must not use children’s offline safety as an excuse in a binary trade off to infringe on those digital rights or ignore risk and harm to the synthesised self in law, policy, and practice.

If future society is to thrive we must do all that is technologically possible to safeguard the best of what makes us human in this blend; our free will.


Part 2 follows with thoughts specific to the upcoming regulations, Digital Economy Bill andDigital Strategy

References:

[1] Internet of things WEF film, starting from 19:30

“What do an umbrella, a shark, a houseplant, the brake pads in a mining truck and a smoke detector all have in common?  They can all be connected online, and in this example, in this WEF film, they are.

“By 2024 more than 50% of home Internet traffic will be used by appliances and devices, rather than just for communication and entertainment…The IoT raises huge questions on privacy and security, that have to be addressed by government, corporations and consumers.”

[2] The government has today announced a “major new drive on internet safety”  [The Register, Martin, A. 27.02.2017]

[3] GDPR page 38 footnote (1) indicates the definition of Information Society Services as laid out in the Directive (EU) 2015/1535 of the European Parliament and of the Council of 9 September 2015 laying down a procedure for the provision of information in the field of technical regulations and of rules on Information Society services (OJ L 241, 17.9.2015, p. 1 and Annex 1)

image source: Startrek.com

The perfect storm: three bills that will destroy student data privacy in England

Lords have voiced criticism and concern at plans for ‘free market’ universities, that will prioritise competition over collaboration and private interests over social good. But while both Houses have identified the institutional effects, they are yet to discuss the effects on the individuals of a bill in which “too much power is concentrated in the centre”.

The Higher Education and Research Bill sucks in personal data to the centre, as well as power. It creates an authoritarian panopticon of the people within the higher education and further education systems. Section 1, parts 72-74 creates risks but offers no safeguards.

Applicants and students’ personal data is being shifted into a  top-down management model, at the same time as the horizontal safeguards for its distribution are to be scrapped.

Through deregulation and the building of a centralised framework, these bills will weaken the purposes for which personal data are collected, and weaken existing requirements on consent to which the data may be used at national level. Without amendments, every student who enters this system will find their personal data used at the discretion of any future Secretary of State for Education without safeguards or oversight, and forever. Goodbye privacy.

Part of the data extraction plans are for use in public interest research in safe settings with published purpose, governance, and benefit. These are well intentioned and this year’s intake of students will have had to accept that use as part of the service in the privacy policy.

But in addition and separately, the Bill will permit data to be used at the discretion of the Secretary of State, which waters down and removes nuances of consent for what data may or may not be used today when applicants sign up to UCAS.

Applicants today are told in the privacy policy they can consent separately to sharing their data with the Student Loans company for example. This Bill will remove that right when it permits all Applicant data to be used by the State.

This removal of today’s consent process denies all students their rights to decide who may use their personal data beyond the purposes for which they permit its sharing.

And it explicitly overrides the express wishes registered by the 28,000 applicants, 66% of respondents to a 2015 UCAS survey, who said as an example, that they should be asked before any data was provided to third parties for student loan applications (or even that their data should never be provided for this).

Not only can the future purposes be changed without limitation,  by definition, when combined with other legislation, namely the Digital Economy Bill that is in the Lords at the same time right now, this shift will pass personal data together with DWP and in connection with HMRC data expressly to the Student Loans Company.

In just this one example, the Higher Education and Research Bill is being used as a man in the middle. But it will enable all data for broad purposes, and if those expand in future, we’ll never know.

This change, far from making more data available to public interest research, shifts the balance of power between state and citizen and undermines the very fabric of its source of knowledge; the creation and collection of personal data.

Further, a number of amendments have been proposed in the Lords to clause 9 (the transparency duty) which raise more detailed privacy issues for all prospective students, concerns UCAS share.

Why this lack of privacy by design is damaging

This shift takes away our control, and gives it to the State at the very time when ‘take back control’ is in vogue. These bills are building a foundation for a data Brexit.

If the public does not trust who will use it and why or are told that when they provide data they must waive any rights to its future control, they will withhold or fake data. 8% of applicants even said it would put them off applying through UCAS at all.

And without future limitation, what might be imposed is unknown.

This shortsightedness will ultimately cause damage to data integrity and the damage won’t come in education data from the Higher Education Bill alone. The Higher Education and Research Bill is just one of three bills sweeping through Parliament right now which build a cumulative anti-privacy storm together, in what is labelled overtly as data sharing legislation or is hidden in tucked away clauses.

The Technical and Further Education Bill – Part 3

In addition to entirely new Applicant datasets moving from UCAS to the DfE in clauses 73 and 74 of the  Higher Education and Research Bill,  Apprentice and FE student data already under the Secretary of State for Education will see potentially broader use under changed purposes of Part 3 of the Technical and Further Education Bill.

Unlike the Higher Education and Research Bill, it may not fundamentally changing how the State gathers information on further education, but it has the potential to do so on use.

The change is a generalisation of purposes. Currently, subsection 1 of section 54 refers to “purposes of the exercise of any of the functions of the Secretary of State under Part 4 of the Apprenticeships, Skills, Children and Learning Act 2009”.

Therefore, the government argues, “it would not hold good in circumstances where certain further education functions were transferred from the Secretary of State to some combined authorities in England, which is due to happen in 2018.”<

This is why clause 38 will amend that wording to “purposes connected with further education”.

Whatever the details of the reason, the purposes are broader.

Again, combined with the Digital Economy Bill’s open ended purposes, it means the Secretary of State could agree to pass these data on to every other government department, a range of public bodies, and some private organisations.

The TFE BIll is at Report stage in the House of Commons on January 9, 2017.

What could go possibly go wrong?

These loose purposes, without future restrictions, definitions of third parties it could be given to or why, or clear need to consult the public or parliament on future scope changes, is a  repeat of similar legislative changes which have resulted in poor data practices using school pupil data in England age 2-19 since 2000.

Policy makers should consider whether the intent of these three bills is to give out identifiable, individual level, confidential data of young people under 18, for commercial use without their consent? Or to journalists and charities access? Should it mean unfettered access by government departments and agencies such as police and Home Office Removals Casework teams without any transparent register of access, any oversight, or accountability?

These are today’s uses by third-parties of school children’s individual, identifiable and sensitive data from the National Pupil Database.

Uses of data not as statistics, but named individuals for interventions in individual lives.

If the Home Secretaries past and present have put international students at the centre of plans to cut migration to the tens of thousands and government refuses to take student numbers out of migration figures, despite them being seen as irrelevant in the substance of the numbers debate, this should be deeply worrying.

Will the MOU between the DfE and the Home Office Removals Casework team be a model for access to all student data held at the Department for Education, even all areas of public administrative data?

Hoping that the data transfers to the Home Office won’t result in the deportation of thousands we would not predict today, may be naive.

Under the new open wording, the Secretary of State for Education might even  decide to sell the nation’s entire Technical and Further Education student data to Trump University for the purposes of their ‘research’ to target marketing at UK students or institutions that may be potential US post-grad applicants. The Secretary of State will have the data simply because she “may require [it] for purposes connected with further education.”

And to think US buyers or others would not be interested is too late.

In 2015 Stanford University made a request of the National Pupil Database for both academic staff and students’ data. It was rejected. We know this only from the third party release register. Without any duty to publish requests, approved users or purposes of data release, where is the oversight for use of these other datasets?

If these are not the intended purposes of these three bills, if there should be any limitation on purposes of use and future scope change, then safeguards and oversight need built into the face of the bills to ensure data privacy is protected and avoid repeating the same again.

Hoping that the decision is always going to be, ‘they wouldn’t approve a request like that’ is not enough to protect millions of students privacy.

The three bills are a perfect privacy storm

As other Europeans seek to strengthen the fundamental rights of their citizens to take back control of their personal data under the GDPR coming into force in May 2018, the UK government is pre-emptively undermining ours in these three bills.

Young people, and data dependent institutions, are asking for solutions to show what personal data is held where, and used by whom, for what purposes. That buys in the benefit message that builds trust showing what you said you’d do with my data, is what you did with my data. [1] [2]

Reality is that in post-truth politics it seems anything goes, on both sides of the Pond. So how will we trust what our data is used for?

2015-16 advice from the cross party Science and Technology Committee suggested data privacy is unsatisfactory, “to be left unaddressed by Government and without a clear public-policy position set out“.  We hear the need for data privacy debated about use of consumer data, social media, and on using age verification. It’s necessary to secure the public trust needed for long term public benefit and for economic value derived from data to be achieved.

But the British government seems intent on shortsighted legislation which does entirely the opposite for its own use: in the Higher Education Bill, the Technical and Further Education Bill and in the Digital Economy Bill.

These bills share what Baroness Chakrabarti said of the Higher Education Bill in its Lords second reading on the 6th December, “quite an achievement for a policy to combine both unnecessary authoritarianism with dangerous degrees of deregulation.”

Unchecked these Bills create the conditions needed for catastrophic failure of public trust. They shift ever more personal data away from personal control, into the centralised control of the Secretary of State for unclear purposes and use by undefined third parties. They jeopardise the collection and integrity of public administrative data.

To future-proof the immediate integrity of student personal data collection and use, the DfE reputation, and public and professional trust in DfE political leadership, action must be taken on safeguards and oversight, and should consider:

  • Transparency register: a public record of access, purposes, and benefits to be achieved from use
  • Subject Access Requests: Providing the public ways to access copies of their own data
  • Consent procedures should be strengthened for collection and cannot say one thing, and do another
  • Ability to withdraw consent from secondary purposes should be built in by design, looking to GDPR from 2018
  • Clarification of the legislative purpose of intended current use by the Secretary of State and its boundaries shoud be clear
  • Future purpose and scope change limitations should require consultation – data collected today must not used quite differently tomorrow without scrutiny and ability to opt out (i.e. population wide registries of religion, ethnicity, disability)
  • Review or sunset clause

If the legislation in these three bills pass without amendment, the potential damage to privacy will be lasting.


[1] http://www.parliament.uk/business/publications/written-questions-answers-statements/written-question/Commons/2016-07-15/42942/  Parliamentary written question 42942 on the collection of pupil nationality data in the school census starting in September 2016:   “what limitations will be placed by her Department on disclosure of such information to (a) other government departments?”

Schools Minister Nick Gibb responded on July 25th 2016: ”

“These new data items will provide valuable statistical information on the characteristics of these groups of children […] “The data will be collected solely for internal Departmental use for the analytical, statistical and research purposes described above. There are currently no plans to share the data with other government Departments”

[2] December 15, publication of MOU between the Home Office  Casework Removals Team and the DfE, reveals “the previous agreement “did state that DfE would provide nationality information to the Home Office”, but that this was changed “following discussions” between the two departments.” http://schoolsweek.co.uk/dfe-had-agreement-to-share-pupil-nationality-data-with-home-office/ 

The agreement was changed on 7th October 2016 to not pass nationality data over. It makes no mention of not using the data within the DfE for the same purposes.

OkCupid and Google DeepMind: Happily ever after? Purposes and ethics in datasharing

This blog post is also available as an audio file on soundcloud.


What constitutes the public interest must be set in a universally fair and transparent ethics framework if the benefits of research are to be realised – whether in social science, health, education and more – that framework will provide a strategy to getting the pre-requisite success factors right, ensuring research in the public interest is not only fit for the future, but thrives. There has been a climate change in consent. We need to stop talking about barriers that prevent datasharing  and start talking about the boundaries within which we can.

What is the purpose for which I provide my personal data?

‘We use math to get you dates’, says OkCupid’s tagline.

That’s the purpose of the site. It’s the reason people log in and create a profile, enter their personal data and post it online for others who are looking for dates to see. The purpose, is to get a date.

When over 68K OkCupid users registered for the site to find dates, they didn’t sign up to have their identifiable data used and published in ‘a very large dataset’ and onwardly re-used by anyone with unregistered access. The users data were extracted “without the express prior consent of the user […].”

Are the registration consent purposes compatible with the purposes to which the researcher put the data should be a simple enough question.  Are the research purposes what the person signed up to, or would they be surprised to find out their data were used like this?

Questions the “OkCupid data snatcher”, now self-confessed ‘non-academic’ researcher, thought unimportant to consider.

But it appears in the last month, he has been in good company.

Google DeepMind, and the Royal Free, big players who do know how to handle data and consent well, paid too little attention to the very same question of purposes.

The boundaries of how the users of OkCupid had chosen to reveal information and to whom, have not been respected in this project.

Nor were these boundaries respected by the Royal Free London trust that gave out patient data for use by Google DeepMind with changing explanations, without clear purposes or permission.

The legal boundaries in these recent stories appear unclear or to have been ignored. The privacy boundaries deemed irrelevant. Regulatory oversight lacking.

The respectful ethical boundaries of consent to purposes, disregarding autonomy, have indisputably broken down, whether by commercial org, public body, or lone ‘researcher’.

Research purposes

The crux of data access decisions is purposes. What question is the research to address – what is the purpose for which the data will be used? The intent by Kirkegaard was to test:

“the relationship of cognitive ability to religious beliefs and political interest/participation…”

In this case the question appears intended rather a test of the data, not the data opened up to answer the test. While methodological studies matter, given the care and attention [or self-stated lack thereof] given to its extraction and any attempt to be representative and fair, it would appear this is not the point of this study either.

The data doesn’t include profiles identified as heterosexual male, because ‘the scraper was’. It is also unknown how many users hide their profiles, “so the 99.7% figure [identifying as binary male or female] should be cautiously interpreted.”

“Furthermore, due to the way we sampled the data from the site, it is not even representative of the users on the site, because users who answered more questions are overrepresented.” [sic]

The paper goes on to say photos were not gathered because they would have taken up a lot of storage space and could be done in a future scraping, and

“other data were not collected because we forgot to include them in the scraper.”

The data are knowingly of poor quality, inaccurate and incomplete. The project cannot be repeated as ‘the scraping tool no longer works’. There is an unclear ethical or peer review process, and the research purpose is at best unclear. We can certainly give someone the benefit of the doubt and say intent appears to have been entirely benevolent. It’s not clear what the intent was. I think it is clearly misplaced and foolish, but not malevolent.

The trouble is, it’s not enough to say, “don’t be evil.” These actions have consequences.

When the researcher asserts in his paper that, “the lack of data sharing probably slows down the progress of science immensely because other researchers would use the data if they could,”  in part he is right.

Google and the Royal Free have tried more eloquently to say the same thing. It’s not research, it’s direct care, in effect, ignore that people are no longer our patients and we’re using historical data without re-consent. We know what we’re doing, we’re the good guys.

However the principles are the same, whether it’s a lone project or global giant. And they’re both wildly wrong as well. More people must take this on board. It’s the reason the public interest needs the Dame Fiona Caldicott review published sooner rather than later.

Just because there is a boundary to data sharing in place, does not mean it is a barrier to be ignored or overcome. Like the registration step to the OkCupid site, consent and the right to opt out of medical research in England and Wales is there for a reason.

We’re desperate to build public trust in UK research right now. So to assert that the lack of data sharing probably slows down the progress of science is misplaced, when it is getting ‘sharing’ wrong, that caused the lack of trust in the first place and harms research.

A climate change in consent

There has been a climate change in public attitude to consent since care.data, clouded by the smoke and mirrors of state surveillance. It cannot be ignored.  The EUGDPR supports it. Researchers may not like change, but there needs to be an according adjustment in expectations and practice.

Without change, there will be no change. Public trust is low. As technology advances and if we continue to see commercial companies get this wrong, we will continue to see public trust falter unless broken things get fixed. Change is possible for the better. But it has to come from companies, institutions, and people within them.

Like climate change, you may deny it if you choose to. But some things are inevitable and unavoidably true.

There is strong support for public interest research but that is not to be taken for granted. Public bodies should defend research from being sunk by commercial misappropriation if they want to future-proof public interest research.

The purpose for which the people gave consent are the boundaries within which you have permission to use data, that gives you freedom within its limits, to use the data.  Purposes and consent are not barriers to be overcome.

If research is to win back public trust developing a future proofed, robust ethical framework for data science must be a priority today.

Commercial companies must overcome the low levels of public trust they have generated in the public to date if they ask ‘trust us because we’re not evil‘. If you can’t rule out the use of data for other purposes, it’s not helping. If you delay independent oversight it’s not helping.

This case study and indeed the Google DeepMind recent episode by contrast demonstrate the urgency with which working out what common expectations and oversight of applied ethics in research, who gets to decide what is ‘in the public interest’ and data science public engagement must be made a priority, in the UK and beyond.

Boundaries in the best interest of the subject and the user

Society needs research in the public interest. We need good decisions made on what will be funded and what will not be. What will influence public policy and where needs attention for change.

To do this ethically, we all need to agree what is fair use of personal data, when is it closed and when is it open, what is direct and what are secondary uses, and how advances in technology are used when they present both opportunities for benefit or risks to harm to individuals, to society and to research as a whole.

The potential benefits of research are potentially being compromised for the sake of arrogance, greed, or misjudgement, no matter intent. Those benefits cannot come at any cost, or disregard public concern, or the price will be trust in all research itself.

In discussing this with social science and medical researchers, I realise not everyone agrees. For some, using deidentified data in trusted third party settings poses such a low privacy risk, that they feel the public should have no say in whether their data are used in research as long it’s ‘in the public interest’.

For the DeepMind researchers and Royal Free, they were confident even using identifiable data, this is the “right” thing to do, without consent.

For the Cabinet Office datasharing consultation, the parts that will open up national registries, share identifiable data more widely and with commercial companies, they are convinced it is all the “right” thing to do, without consent.

How can researchers, society and government understand what is good ethics of data science, as technology permits ever more invasive or covert data mining and the current approach is desperately outdated?

Who decides where those boundaries lie?

“It’s research Jim, but not as we know it.” This is one aspect of data use that ethical reviewers will need to deal with, as we advance the debate on data science in the UK. Whether independents or commercial organisations. Google said their work was not research. Is‘OkCupid’ research?

If this research and data publication proves anything at all, and can offer lessons to learn from, it is perhaps these three things:

Who is accredited as a researcher or ‘prescribed person’ matters. If we are considering new datasharing legislation, and for example, who the UK government is granting access to millions of children’s personal data today. Your idea of a ‘prescribed person’ may not be the same as the rest of the public’s.

Researchers and ethics committees need to adjust to the climate change of public consent. Purposes must be respected in research particularly when sharing sensitive, identifiable data, and there should be no assumptions made that differ from the original purposes when users give consent.

Data ethics and laws are desperately behind data science technology. Governments, institutions, civil, and all society needs to reach a common vision and leadership how to manage these challenges. Who defines these boundaries that matter?

How do we move forward towards better use of data?

Our data and technology are taking on a life of their own, in space which is another frontier, and in time, as data gathered in the past might be used for quite different purposes today.

The public are being left behind in the game-changing decisions made by those who deem they know best about the world we want to live in. We need a say in what shape society wants that to take, particularly for our children as it is their future we are deciding now.

How about an ethical framework for datasharing that supports a transparent public interest, which tries to build a little kinder, less discriminating, more just world, where hope is stronger than fear?

Working with people, with consent, with public support and transparent oversight shouldn’t be too much to ask. Perhaps it is naive, but I believe that with an independent ethical driver behind good decision-making, we could get closer to datasharing like that.

That would bring Better use of data in government.

Purposes and consent are not barriers to be overcome. Within these, shaped by a strong ethical framework, good data sharing practices can tackle some of the real challenges that hinder ‘good use of data’: training, understanding data protection law, communications, accountability and intra-organisational trust. More data sharing alone won’t fix these structural weaknesses in current UK datasharing which are our really tough barriers to good practice.

How our public data will be used in the public interest will not be a destination or have a well defined happy ending, but it is a long term  process which needs to be consensual and there needs to be a clear path to setting out together and achieving collaborative solutions.

While we are all different, I believe that society shares for the most part, commonalities in what we accept as good, and fair, and what we believe is important. The family sitting next to me have just counted out their money and bought an ice cream to share, and the staff gave them two. The little girl is beaming. It seems that even when things are difficult, there is always hope things can be better. And there is always love.

Even if some might give it a bad name.

********

img credit: flickr/sofi01/ Beauty and The Beast  under creative commons

Can new datasharing laws win social legitimacy, public trust and support without public engagement?

I’ve been struck by stories I’ve heard on the datasharing consultation, on data science, and on data infrastructures as part of ‘government as a platform’ (#GaaPFuture) in recent weeks. The audio recorded by the Royal Statistical Society on March 17th is excellent, and there were some good questions asked.

There were even questions from insurance backed panels to open up more data for commercial users, and calls for journalists to be seen as accredited researchers, as well as to include health data sharing. Three things that some stakeholders, all users of data, feel are  missing from consultation, and possibly some of those with the most widespread public concern and lowest levels of public trust. [1]

What I feel is missing in consultation discussions are:

  1. a representative range of independent public voice
  2. a compelling story of needs – why tailored public services benefits citizens from whom data is taken, not only benefits data users
  3. the impacts we expect to see in local government
  4. any cost/risk/benefit assessment of those impacts, or for citizens
  5. how the changes will be independently evaluated – as some are to be reviewed

The Royal Statistical Society and ODI have good summaries here of their thoughts, more geared towards the statistical and research aspects of data,  infrastructure and the consultation.

I focus on the other strands that use identifiable data for targeted interventions. Tailored public services, Debt, Fraud, Energy Companies’ use. I think we talk too little of people, and real needs.

Why the State wants more datasharing is not yet a compelling story and public need and benefit seem weak.

So far the creation of new data intermediaries, giving copies of our personal data to other public bodies  – and let’s be clear that this often means through commercial representatives like G4S, Atos, Management consultancies and more –  is yet to convince me of true public needs for the people, versus wants from parts of the State.

What the consultation hopes to achieve, is new powers of law, to give increased data sharing increased legal authority. However this alone will not bring about the social legitimacy of datasharing that the consultation appears to seek through ‘open policy making’.

Legitimacy is badly needed if there is to be public and professional support for change and increased use of our personal data as held by the State, which is missing today,  as care.data starkly exposed. [2]

The gap between Social Legitimacy and the Law

Almost 8 months ago now, before I knew about the datasharing consultation work-in-progress, I suggested to BIS that there was an opportunity for the UK to drive excellence in public involvement in the use of public data by getting real engagement, through pro-active consent.

The carrot for this, is achieving the goal that government wants – greater legal clarity, the use of a significant number of consented people’s personal data for complex range of secondary uses as a secondary benefit.

It was ignored.

If some feel entitled to the right to infringe on citizens’ privacy through a new legal gateway because they believe the public benefit outweighs private rights, then they must also take on the increased balance of risk of doing so, and a responsibility to  do so safely. It is in principle a slippery slope. Any new safeguards and ethics for how this will be done are however unclear in those data strands which are for targeted individual interventions. Especially if predictive.

Upcoming discussions on codes of practice [which have still to be shared] should demonstrate how this is to happen in practice, but codes are not sufficient. Laws which enable will be pushed to their borderline of legal and beyond that of ethical.

In England who would have thought that the 2013 changes that permitted individual children’s data to be given to third parties [3] for educational purposes, would mean giving highly sensitive, identifiable data to journalists without pupils or parental consent? The wording allows it. It is legal. However it fails the DPA Act legal requirement of fair processing.  Above all, it lacks social legitimacy and common sense.

In Scotland, there is current anger over the intrusive ‘named person’ laws which lack both professional and public support and intrude on privacy. Concerns raised should be lessons to learn from in England.

Common sense says laws must take into account social legitimacy.

We have been told at the open policy meetings that this change will not remove the need for informed consent. To be informed, means creating the opportunity for proper communications, and also knowing how you can use the service without coercion, i.e. not having to consent to secondary data uses in order to get the service, and knowing to withdraw consent at any later date. How will that be offered with ways of achieving the removal of data after sharing?

The stick for change, is the legal duty that the recent 2015 CJEU ruling reiterating the legal duty to fair processing [4] waved about. Not just a nice to have, but State bodies’ responsibility to inform citizens when their personal data are used for purposes other than those for which those data had initially been consented and given. New legislation will not  remove this legal duty.

How will it be achieved without public engagement?

Engagement is not PR

Failure to act on what you hear from listening to the public is costly.

Engagement is not done *to* people, don’t think explain why we need the data and its public benefit’ will work. Policy makers must engage with fears and not seek to dismiss or diminish them, but acknowledge and mitigate them by designing technically acceptable solutions. Solutions that enable data sharing in a strong framework of privacy and ethics, not that sees these concepts as barriers. Solutions that have social legitimacy because people support them.

Mr Hunt’s promised February 2014 opt out of anonymised data being used in health research, has yet to be put in place and has had immeasurable costs for delayed public research, and public trust.

How long before people consider suing the DH as data controller for misuse? From where does the arrogance stem that decides to ignore legal rights, moral rights and public opinion of more people than those who voted for the Minister responsible for its delay?

 

This attitude is what fails care.data and the harm is ongoing to public trust and to confidence for researchers’ continued access to data.

The same failure was pointed out by the public members of the tiny Genomics England public engagement meeting two years ago in March 2014, called to respond to concerns over the lack of engagement and potential harm for existing research. The comms lead made a suggestion that the new model of the commercialisation of the human genome in England, to be embedded in the NHS by 2017 as standard clinical practice, was like steam trains in Victorian England opening up the country to new commercial markets. The analogy was felt by the lay attendees to be, and I quote, ‘ridiculous.’

Exploiting confidential personal data for public good must have support and good two-way engagement if it is to get that support, and what is said and agreed must be acted on to be trustworthy.

Policy makers must take into account broad public opinion, and that is unlikely to be submitted to a Parliamentary consultation. (Personally, I first knew such  processes existed only when care.data was brought before the Select Committee in 2014.) We already know what many in the public think about sharing their confidential data from the work with care.data and objections to third party access, to lack of consent. Just because some policy makers don’t like what was said, doesn’t make that public opinion any less valid.

We must bring to the table the public voice from past but recent public engagement work on administrative datasharing [5], the voice of the non-research community, and from those who are not stakeholders who will use the data but the ‘data subjects’, the public  whose data are to be used.

Policy Making must be built on Public Trust

Open policy making is not open just because it says it is. Who has been invited, participated, and how their views actually make a difference on content and implementation is what matters.

Adding controversial ideas at the last minute is terrible engagement, its makes the process less trustworthy and diminishes its legitimacy.

This last minute change suggests some datasharing will be dictated despite critical views in the policy making and without any public engagement. If so, we should ask policy makers on what mandate?

Democracy depends on social legitimacy. Once you lose public trust, it is not easy to restore.

Can new datasharing laws win social legitimacy, public trust and support without public engagement?

In my next post I’ll post look at some of the public engagement work done on datasharing to date, and think about ethics in how data are applied.

*************

References:

[1] The Royal Statistical Society data trust deficit

[2] “The social licence for research: why care.data ran into trouble,” by Carter et al.

[3] FAQs: Campaign for safe and ethical National Pupil Data

[4] CJEU Bara 2015 Ruling – fair processing between public bodies

[5] Public Dialogues using Administrative data (ESRC / ADRN)

img credit: flickr.com/photos/internetarchivebookimages/

Destination smart-cities: design, desire and democracy (Part four)

Who is using all this Big Data? What decisions are being made on the back of it that we never see?

In the everyday and press it often seems that the general public does not understand data, and can easily be told things which we misinterpret.

There are tools in social media influencing public discussions and leading conversations in a different direction from that it had taken, and they operate without regulation.

It is perhaps meaningful that pro-reform Wellington School last week opted out of some of the greatest uses of Big Data sharing in the UK. League tables. Citing their failures. Deciding they werein fact, a key driver for poor educational practice.”

Most often we cannot tell from the data provided what we are told those Big Data should be telling us. And we can’t tell if the data are accurate, genuine and reliable.

Yet big companies are making big money selling the dream that Big Data is the key to decision making. Cumulatively through lack of skills to spot inaccuracy, and inability to do necessary interpretation, we’re being misled by what we find in Big Data.

Being misled is devastating for public trust, as the botched beginnings of care.data found in 2014. Trust has come to be understood as vital for future based on datasharing. Public involvement in how we are used in Big Data in the future, needs to include how our data are used in order to trust they are used well. And interpreting those data well is vital. Those lessons of the past and present must be learned, and not forgotten.

It’s time to invest some time in thinking about safeguarding trust in the future, in the unknown, and the unseen.

We need to be told which private companies like Cinven and FFT have copies of datasets like HES, the entire 62m national hospital records, or the NPD, our entire schools database population of 20 million, or even just its current cohort of 8+ million.

If the public is to trust the government and public bodies to use our data well, we need to know exactly how those data are used today and all these future plans that others have for our personal data.

When we talk about public bodies sharing data they hold for administrative purposes, do we know which private companies this may mean in reality?

The UK government has big plans for big data sharing, sharing across all public bodies, some tailored for individual interventions.

While there are interesting opportunities for public benefit from at-scale systems, the public benefit is at risk not only from lack of trust in how systems gather data and use them, but that interoperability gets lost in market competition.

Openness and transparency can be absent in public-private partnerships until things go wrong. Given the scale of smart-cities, we must have more than hope that data management and security will not be one of those things.

But how will we know if new plans design well, or not?

Who exactly holds and manages those data and where is the oversight of how they are being used?

Using Big Data to be predictive and personal

How do we definde “best use of data” in “public services” right across the board in a world in which boundaries between private and public in the provision of services have become increasingly blurred?

UK researchers and police are already analysing big data for predictive factors at postcode level for those at risk or harm, for example in combining health and education data.

What has grown across the Atlantic is now spreading here. When I lived there I could already see some of what is deeply flawed.

When your system has been as racist in its policing and equity of punishment as institutionally systemic as it is in the US, years of cumulative data bias translates into ‘heat lists’ and means “communities of color will be systematically penalized by any risk assessment tool that uses criminal history as a legitimate criterion.”

How can we ensure British policing does not pursue flawed predictive policies and methodologies, without seeing them?

What transparency have our use of predictive prisons and justice data?

What oversight will the planned new increase in use of satellite tags, and biometrics access in prisons have?

What policies can we have in place to hold data-driven decision-making processes accountable?<

What tools do we need to seek redress for decisions made using flawed algorithms that are apparently indisputable?

Is government truly committed to being open and talking about how far the nudge unit work is incorporated into any government predictive data use? If not, why not?

There is a need for a broad debate on the direction of big data and predictive technology and whether the public understands and wants it.If we don’t understand, it’s time someone explained it.

If I can’t opt out of O2 picking up my travel data ad infinitum on the Tube, I will opt out of their business model and try to find a less invasive provider. If I can’t opt out of EE picking up my personal data as I move around Hyde park, it won’t be them.

Most people just want to be left alone and their space is personal.

A public consultation on smart-technology, and its growth into public space and effect on privacy could be insightful.

Feed me Seymour?

With the encroachment of integrated smart technology over our cities – our roads, our parking, our shopping, our parks, our classrooms, our TV and our entertainment, even our children’s toys – surveillance and sharing information from systems we cannot see  start defining what others may view, or decide about us, behind the scenes in everything we do.

As it expands city wide, it will be watched closely if data are to be open for public benefit, but not invade privacy if “The data stored in this infrastructure won’t be confidential.”

If the destination of digital in all parts of our lives is smart-cities then we have to collectively decide, what do we want, what do we design, and how do we keep it democratic?

What price is our freedom to decide how far its growth should reach into public space and private lives?

The cost of smart cities to individuals and the public is not what it costs in investment made by private conglomerates.

Already the cost of smart technology is privacy inside our homes, our finances, and autonomy of decision making.

Facebook and social media may run algorithms we never see that influence our mood or decision making. Influencing that decision making is significant enough when it’s done through advertising encouraging us to decide which sausages to buy for your kids tea.

It is even more significant when you’re talking about influencing voting.

Who influences most voters wins an election. If we can’t see the technology behind the influence, have we also lost sight of how democracy is decided? The power behind the mechanics of the cogs of Whitehall may weaken inexplicably as computer driven decision from the tech companies’ hidden tools takes hold.

What opportunity and risk to “every part of government” does ever expanding digital bring?

The design and development of smart technology that makes decisions for us and about us, lies in in the hands of large private corporations, not government.

The means the public-interest values that could be built by design and their protection and oversight are currently outside our control.

There is no disincentive for companies that have taken private information that is none of their business, and quite literally, made it their business to not want to collect ever more data about us. It is outside our control.

We must plan by-design for the values we hope for, for ethics, to be embedded in systems, in policies, embedded in public planning and oversight of service provision by all providers. And that the a fair framework of values is used when giving permission to private providers who operate in public spaces.

We must plan for transparency and interoperability.

We must plan by-design for the safe use of data that does not choke creativity and innovation but both protects and champions privacy as a fundamental building block of trust for these new relationships between providers of private and public services, private and public things, in private and public space.

If “digital is changing how we deliver every part of government,” and we want to “harness the best of digital and technology, and the best use of data to improve public services right across the board” then we must see integration in the planning of policy and its application.

Across the board “the best use of data” must truly value privacy, and enable us to keep our autonomy as individuals.

Without this, the cost of smart cities growing unchecked, will be an ever growing transfer of power to the funders behind corporations and campaign politics.

The ultimate price of this loss of privacy, will be democracy itself.

****

This is the conclusion to a four part set of thoughts: On smart technology and data from the Sprint16 session (part one). I thought about this more in depth on “Smart systems and Public Services” here (part two), and the design and development of smart technology making “The Best Use of Data” here looking at today in a UK company case study (part three) and this part four, “The Best Use of Data” used in predictions and the Future.

Destination smart-cities: design, desire and democracy (Part three)

Smart Technology we have now: A UK Case Study

In places today, where climate surveillance sensors are used to predict and decide which smog-days cars should be banned from cities, automatic number-plate recognition (ANPR) can identify cars driving on the wrong days and send automatic penalties.

Similarly ANPR technology is used in our UK tunnels and congestion charging systems. One British company encouraging installation of ANPR in India is the same provider of a most significant part of our British public administrative data and surveillance softwares in a range of sectors.

About themselves that company says:

“Northgate Public Services has a unique experience of delivering ANPR software to all Home Office police forces. We developed and managed the NADC, the mission critical solution providing continuous surveillance of the UK’s road network.  The NADC is integrated with other databases, including the Police National Computer, and supports more than 30 million reads a day across the country.”

30 million snapshots from ‘continuous surveillance of the UK’s road network‘. That’s surprised me. That’s half the population in England, not all of whom drive. 30 million every day. It’s massive, unreasonable, and risks backlash.

Northgate Public Services’ clients also include 80% of UK water companies, as well as many other energy and utility suppliers.

And in the social housing market they stretch to debt collection, or ‘income management’.

So who I wondered, who is this company that owns all this data-driven access to our homes, our roads, our utilities, life insurance, hospital records and registeries, half of all UK calls to emergency services?

Northgate Information Solutions announced the sale of its Public Services division in December 2014 to venture capital firm Cinven. Cinven that also owns a 62% shareholding in the UK private healthcare provider Spire with all sorts of influence given their active share of services and markets. 

Not only does this private equity firm hold these vast range of data systems across a wide range of sectors, but it’s making decisions about how our public policies and money are being driven.

Using health screening data they’re even making decisions that affect our future and our behaviour and affect our private lives: software provides the information and tools that housing officers need to proactively support residents, such as sending emails, letters or rent reminders by SMS and freeing up time for face-to-face support.”

Of their ANPR systems, Northgate says the data should be even more widely used “to turn CONNECT: ANPR into a critical source of intelligence for proactive policing.”

If the company were to start to ‘proactively’ use all the data it owns across the sectors we should be asking, is ‘smart’ sensible and safe?

Where is the boundary between proactive and predictive? Or public and private?

Where do companies draw the line between public and personal space?

The public services provided by the company seem to encroach into our private lives in many ways, In Northgate’s own words, “It’s also deeply personal.”

Who’s driving decision making is clear. The source of their decision making is data. And it’s data about us.

Today already whether collected by companies proactively like ANPR or through managing data we give them with consent for direct administrative purpose, private companies are the guardians of massive amounts of our personal and public data.

What is shocking to me, is how collected data in one area of public services are also used for entirely different secondary purposes without informed consent or an FYI, for example in schools.

If we don’t know which companies manage our data, how can we trust that it is looked after well and that we are told if things go wrong?

Steps must be taken in administrative personal data security, transparency and public engagement to shore up public trust as the foundation for future datasharing as part of the critical infrastructure for any future strategy, for public or commercial application. Strategy must include more transparency of the processing of our data and public involvement, not the minimum, if ‘digital citizenship’ is to be meaningful.

How would our understanding of data improve if anyone using personal data were required to put in place clear public statements about their collection, use and analysis of data?  If the principles of data protection were actually upheld, in particular that individuals should be informed? How would our understanding of data improve especially regards automated decision making and monitoring technology? Not ninety page privacy policies. Plain English. If you need ninety pages, you’re doing too much with my data.

Independent privacy impact assessments should be mandatory and published before data are collected and shared with any party other than that to which it was given for a specific purpose. Extensions broadening that purpose should require consultation and consent. If that’s a street, then make it public in plain sight.

Above all, planning committees in local government, in policy making and practical application, need to think of data in every public decision they make and its ethical implications. We need some more robust decision-making in the face of corporate data grabs, to defend data collected in public space safe, and to keep some private.

How much less fun is a summer’s picnic spent smooching, if you feel watched? How much more anxious will we make our children if they’re not allowed to ever have their own time to themselves, and every word they type in a school computer is monitored?

How much individual creativity and innovation does that stifle? We are effectively censoring children before they have written a word.

Large corporations have played historically significant and often shadowy roles in surveillance that retrospectively were seen as unethical.

We should consider sooner rather than later, if corporations such as BAE systems, Siemens and the IMSs of the world act in ways worthy of our trust in such massive reach into our lives, with little transparency and oversight.

“Big data is big opportunity but Government should tackle misuse”

The Select Committee warned in its recent report on Big Data that distrust arising from concerns about privacy and security is often well-founded and must be resolved by industry and Government.

If ‘digital’ means smart technology in the future is used in “every part of government” as announced at #Sprint16, what will its effects be on the involvement and influence these massive corporations on democracy itself?

******

I thought about this more in depth on Part one here,  “Smart systems and Public Services” here (part two), and continue after this by looking at “The Best Use of Data” used in predictions and the Future (part four).

Destination smart-cities: design, desire and democracy (Part two)

Smart cities: private reach in public space and personal lives

Smart-cities are growing in the UK through private investment and encroachment on public space. They are being built by design at home, and supported by UK money abroad, with enormous expansion plans in India for example, in almost 100 cities.

With this rapid expansion of “smart” technology not only within our living rooms but my living space and indeed across all areas of life, how do we ensure equitable service delivery, (what citizens generally want, as demonstrated by strength of feeling on the NHS) continues in public ownership, when the boundary in current policy is ever more blurred between public and private corporate ownership?

How can we know and plan by-design that the values we hope for, are good values, and that they will be embedded in systems, in policies and planning? Values that most people really care about. How do we ensure “smart” does not ultimately mean less good? That “smart” does not in the end mean, less human.

Economic benefits seem to be the key driver in current government thinking around technology – more efficient = costs less.

While using technology progressing towards replacing repetitive work may be positive, how will we accommodate for those whose skills will no longer be needed? In particular its gendered aspect, and the more vulnerable in the workforce, since it is women and other minorities who work disproportionately in our part-time, low skill jobs. Jobs that are mainly held by women, even what we think of as intrinsically human, such as carers, are being trialed for outsourcing or assistance by technology. These robots monitor people, in their own homes and reduce staffing levels and care home occupancy. We’ll no doubt hear how good it is we need fewer carers because after all, we have a shortage of care staff. We’ll find out whether it is positive for the cared, or whether they find it it less ‘human'[e]. How will we measure those costs?

The ideal future of us all therefore having more leisure time sounds fab, but if we can’t afford it, we won’t be spending more of our time employed in leisure. Some think we’ll simply be unemployed. And more people live in the slums of Calcutta than in Soho.

One of the greatest benefits of technology is how more connected the world can be, but will it also be more equitable?

There are benefits in remote sensors monitoring changes in the atmosphere that dictate when cars should be taken off the roads on smog-days, or indicators when asthma risk-factors are high.

Crowd sourcing information about things which are broken, like fix-my-street, or lifts out-of-order are invaluable in cities for wheelchair users.

Innovative thinking and building things through technology can create things which solve simple problems and add value to the person using the tool.

But what of the people that cannot afford data, cannot be included in the skilled workforce, or will not navigate apps on a phone?

How this dis-incentivises the person using the technology has not only an effect on their disappointment with the tool, but the service delivery, and potentially wider still even to societal exclusion or stigma.These were the findings of the e-red book in Glasgow explained at the Digital event in health, held at the King’s Fund in summer 2015.

Further along the scale of systems and potential for negative user experience, how do we expect citizens to react to finding punishments handed out by unseen monitoring systems, finding out our behaviour was ‘nudged’ or find decisions taken about us, without us?

And what is the oversight and system of redress for people using systems, or whose data are used but inaccurate in a system, and cause injustice?

And wider still, while we encourage big money spent on big data in our part of the world how is it contributing to solving problems for millions for whom they will never matter? Digital and social media makes increasingly transparent our one connected world, with even less excuse for closing our eyes.

Approximately 15 million girls worldwide are married each year – that’s one girl, aged under 18, married off against her will every two seconds. [Huff Post, 2015]

Tinder-type apps are luxury optional extras for many in the world.

Without embedding values and oversight into some of what we do through digital tools implemented by private corporations for profit, ‘smart’ could mean less fair, less inclusive, less kind. Less global.

If digital becomes a destination, and how much it is implemented is seen as a measure of success, by measuring how “smart” we become risks losing sight of seeing technology as solutions and steps towards solving real problems for real people.

We need to be both clever and sensible, in our ‘smart’.

Are public oversight and regulation built in to make ‘smart’ also be safe?

If there were public consultation on how “smart” society will look would we all agree if and how we want it?

Thinking globally, we need to ask if we are prioritising the wrong problems? Are we creating more tech that we already have invented solutions for place where governments are willing to spend on them? And will it in those places make the society more connected across class and improve it for all, or enhance the lives of the ‘haves’ by having more, and the ‘have-nots’ be excluded?

Does it matter how smart your TV gets, or carer, or car, if you cannot afford any of these convenient add-ons to Life v1.1?

As we are ever more connected, we are a global society, and being ‘smart’ in one area may be reckless if at the expense or ignorance of another.

People need to Understand what “Smart” means

“Consistent with the wider global discourse on ‘smart’ cities, in India urban problems are constructed in specific ways to facilitate the adoption of “smart hi-tech solutions”. ‘Smart’ is thus likely to mean technocratic and centralized, undergirded by alliances between the Indian government and hi-technology corporations.”  [Saurabh Arora, Senior Lecturer in Technology and Innovation for Development at SPRU]

Those investing in both countries are often the same large corporations. Very often, venture capitalists.

Systems designed and owned by private companies provide the information technology infrastructure that i:

the basis for providing essential services to residents. There are many technological platforms involved, including but not limited to automated sensor networks and data centres.’

What happens when the commercial and public interest conflict and who decides that they do?

Decision making, Mining and Value

Massive amounts of data generated are being mined for making predictions, decisions and influencing public policy: in effect using Big Data for research purposes.

Using population-wide datasets for social and economic research today, is done in safe settings, using deidentified data, in the public interest, and has independent analysis of the risks and benefits of projects as part of the data access process.

Each project goes before an ethics committee review to assess its considerations for privacy and not only if the project can be done, but should be done, before it comes for central review.

Similarly our smart-cities need ethics committee review assessing the privacy impact and potential of projects before commissioning or approving smart-technology. Not only assessing if they are they feasible, and that we ‘can’ do it, but ‘should’ we do it. Not only assessing the use of the data generated from the projects, but assessing the ethical and privacy implications of the technology implementation itself.

The Committee recommendations on Big Data recently proposed that a ‘Council of Data Ethics’ should be created to explicitly address these consent and trust issues head on. But how?

Unseen smart-technology continues to grow unchecked often taking root in the cracks between public-private partnerships.

We keep hearing about Big Data improving public services but that “public” data is often held by private companies. In fact our personal data for public administration has been widely outsourced to private companies of which we have little oversight.

We’re told we paid the price in terms of skills and are catching up.

But if we simply roll forward in first gear into the connected city that sees all, we may find we arrive at a destination that was neither designed nor desired by the majority.

We may find that the “revolution, not evolution”, hoped for in digital services will be of the unwanted kind if companies keep pushing more and more for more data without the individual’s consent and our collective public buy-in to decisions made about data use.

Having written all this, I’ve now read the Royal Statistical Society’s publication which eloquently summarises their recent work and thinking. But I wonder how we tie all this into practical application?

How we do governance and regulation is tied tightly into the practicality of public-private relationships but also into deciding what should society look like? That is what our collective and policy decisions about what smart-cities should be and may do, is ultimately defining.

I don’t think we are addressing in depth yet the complexity of regulation and governance that will be sufficient to make Big Data and Public Spaces safe because companies say too much regulation risks choking off innovation and creativity.

But that risk must not be realised if it is managed well.

Rather we must see action to manage the application of smart-technology in a thoughtful way quickly, because if we do not, very soon, we’ll have lost any say in how our service providers deliver.

*******

I began my thoughts about this in Part one, on smart technology and data from the Sprint16 session and after this (Part two), continue to look at the design and development of smart technology making “The Best Use of Data” with a UK company case study (Part three) and “The Best Use of Data” used in predictions and the Future (Part four).

Destination smart-cities: design, desire and democracy (Part one)

When I drop my children at school in the morning I usually tell them three things: “Be kind. Have fun. Make good choices.”

I’ve been thinking recently about what a positive and sustainable future for them might look like. What will England be in 10 years?

The #Sprint16 snippets I read talk about how: ”Digital is changing how we deliver every part of government,” and “harnessing the best of digital and technology, and the best use of data to improve public services right across the board.”

From that three things jumped out at me:

  • The first is that the “best use of data” in government’s opinion may conflict with that of the citizen.
  • The second, is how to define “public services” right across the board in a world in which boundaries between private and public in the provision of services have become increasingly blurred.
  • And the third is the power of tech to offer both opportunity and risk if used in “every part of government” and effects on access to, involvement in, and the long-term future of, democracy.

What’s the story so far?

In my experience so far of trying to be a digital citizen “across the board” I’ve seen a few systems come and go. I still have my little floppy paper Government Gateway card, navy blue with yellow and white stripes. I suspect it is obsolete. I was a registered Healthspace user, and used it twice. It too, obsolete. I tested my GP online service. It was a mixed experience.

These user experiences are shaping how I interact with new platforms and my expectations of organisations, and I will be interested to see what the next iteration, nhs alpha, offers.

How platforms and organisations interact with me, and my data, is however increasingly assumed without consent. This involves new data collection, not only using data from administrative or commercial settings to which I have agreed, but new scooping of personal data all around us in “smart city” applications.

Just having these digital applications will be of no benefit and all the disadvantages of surveillance for its own sake will be realised.

So how do we know that all these data collected are used – and by whom? How do we ensure that all the tracking actually gets turned into knowledge about pedestrian and traffic workflow to make streets and roads safer and smoother in their operation, to make street lighting more efficient, or the environment better to breathe in and enjoy? And that we don’t just gift private providers tonnes of valuable data which they simply pass on to others for profit?

Because without making things better, in this Internet-of-Things will be a one-way ticket to power in the hands of providers and loss of control, and quality of life. We’ll work around it, but buying a separate SIM card for trips into London, avoiding certain parks or bridges, managing our FitBits to the nth degree under a pseudonym. But being left no choice but to opt out of places or the latest technology to enjoy, is also tedious. If we want to buy a smart TV to access films on demand, but don’t want it to pass surveillance or tracking information back to the company how can we find out with ease which products offer that choice?

Companies have taken private information that is none of their business, and quite literally, made it their business.

The consumer technology hijack of “smart” to always mean marketing surveillance creates a divide between those who will comply for convenience and pay the price in their privacy, and those who prize privacy highly enough to take steps that are less convenient, but less compromised.

But even wanting the latter, it can be so hard to find out how to do, that people feel powerless and give-in to the easy option on offer.

Today’s system of governance and oversight that manages how our personal data are processed by providers of public and private services we have today, in both public and private space, is insufficient to meet the values most people reasonably expect, to be able to live their life without interference.

We’re busy playing catch up with managing processing and use, when many people would like to be able to control collection.

The Best use of Data: Today

My experience of how the government wants to ‘best use data’ is that until 2013 I assumed the State was responsible with it.

I feel bitterly let down.

care.data taught me that the State thinks my personal data and privacy are something to exploit, and “the best use of my data” for them, may be quite at odds with what individuals expect. My trust in the use of my health data by government has been low ever since. Saying one thing and doing another, isn’t making it more trustworthy.

I found out in 2014 how my children’s personal data are commercially exploited and given to third parties including press outside safe settings, by the Department for Education. Now my trust is at rock bottom. I tried to take a look at what the National Pupil Database stores on my own children and was refused a subject access request, meanwhile the commercial sector and Fleet Street press are given out not only identifiable data, but ‘highly sensitive’ data. This just seems plain wrong in terms of security, transparency and respect for the person.

The attitude that there is an entitlement of the State to individuals’ personal data has to go.

The State has pinched 20 m children’s privacy without asking. Tut Tut indeed. [see Very British Problems for a translation].

And while I support the use of public administrative data in deidentified form in safe settings, it’s not to be expected that anything goes. But the feeling of entitlement to access our personal data for purposes other than that for which we consented, is growing, as it stretches to commercial sector data. However suggesting that public feeling measured based on work with 0.0001% of the population, is “wide public support for the use and re-use of private sector data for social research” seems tenuous.

Even so, comments even in that tiny population suggested, “many participants were taken by surprise at the extent and size of data collection by the private sector” and some “felt that such data capture was frequently unwarranted.” “The principal concerns about the private sector stem from the sheer volume of data collected with and without consent from individuals and the profits being made from linking data and selling data sets.”

The Best use of Data: The Future

Young people, despite seniors often saying “they don’t care about privacy” are leaving social media in search of greater privacy.

These things cannot be ignored if the call for digital transformation between the State and the citizen is genuine because try and do it to us and it will fail. Change must be done with us. And ethically.

And not “ethics” as in ‘how to’, but ethics of “should we.” Qualified transparent evaluation as done in other research areas, not an add on, but integral to every project, to look at issues such as:

  • whether participation is voluntary, opt-out or covert
  • how participants can get and give informed consent
  • accessibility to information about the collection and its use
  • small numbers, particularly of vulnerable people included
  • identifiable data collection or disclosure
  • arrangements for dealing with disclosures of harm and recourse
  • and how the population that will bear the risks of participating in the research is likely to benefit from the knowledge derived from the research or not.

Ethics is not about getting away with using personal data in ways that won’t get caught or hauled over the coals by civil society.

It’s balancing risk and benefit in the public interest, and not always favouring the majority, but doing what is right and fair.

We hear a lot at the moment on how the government may see lives, shaped by digital skills, but too little of heir vison for what living will look and feel like, in smart cities of the future.

My starting question is, how does government hope society will live there and is it up to them to design it? If not, who is because these smart-city systems are not designing themselves. You’ve heard of Stepford wives. I wonder what do we do if we do not want to live like Milton Keynes man?

I hope that the world my children will inherit will be more just, more inclusive, and with a more sustainable climate to support food, livelihoods and kinder than it is today. Will ‘smart’ help or hinder?

What is rarely discussed in technology discussions is how the service should look regardless of technology. The technology assumed as inevitable, becomes the centre of service delivery.

I’d like to first understand what is the central and local government vision for “public services”  provision for people of the future? What does it mean for everyday services like schools and health, and how does it balance security and our freedoms?

Because without thinking about how and who provides those services for people, there is a hole in the discussion of “the best use of data” and their improvement “right across the board”.

The UK government has big plans for big data sharing, sharing across all public bodies, some tailored for individual interventions.

While there are interesting opportunities for public benefit from at-scale systems, the public benefit is at risk not only from lack of trust in how systems gather data and use them, but that interoperability in service, and the freedom for citizens to transfer provider, gets lost in market competition.

Openness and transparency can be absent in public-private partnerships until things go wrong. Given the scale of smart-cities, we must have more than hope that data management and security will not be one of those things.

How will we know if new plans are designed well, or not?

When I look at my children’s future and how our current government digital decision making may affect it, I wonder if their future will be more or less kind. More or less fun.

Will they be left with the autonomy to make good choices of their own?

The hassle we feel when we feel watched all the time, by every thing that we own, in every place we go, having to check every check box has a reasonable privacy setting, has a cumulative cost in our time and anxieties.

Smart technology has invaded not only our public space and our private space, but has nudged into our head space.

I for one have had enough already. For my kids I want better. Technology should mean progress for people, not tyranny.

Living in smart cities, connected in the Internet-of-Things, run on their collective Big Data and paid for by commercial corporate providers, threatens not only their private lives and well-being, their individual and independent lives, but ultimately independent and democratic government as we know it.

*****

This is the start of a four part set of thoughts: Beginnings with smart technology and data triggered by the Sprint16 session (part one). I think about this more in depth in “Smart systems and Public Services” (Part two) here, and the design and development of smart technology making “The Best Use of Data” looking at today in a UK company case study (Part three) before thoughts on “The Best Use of Data” used in predictions and the Future (Part four).